HNbWO₆ and HTaWO₆: Novel Oxides Related to ReO₃ Formed by lon Exchange of Rutile-Type LiNbWO₆ and LiTaWO₆¹

VASUDEVA BHAT AND J. GOPALAKRISHNAN²

Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India

Received July 24, 1985; in revised form November 25, 1985

Both LiNbWO₆ and LiTaWO₆ undergo ion exchange in hot aqueous H₂SO₄ yielding the hydrates HMWO₆ \cdot H₂O (M = Nb or Ta). The reaction is accompanied by a structural transformation from the rutile to the ReO₃ structure. The cell constants are a = 3.783(3) Å for HNbWO₆ \cdot H₂O and a = 3.785(5) Å for HTaWO₆ \cdot H₂O. The ReO₃ structure is retained by the dehydration products HMWO₆ and MWO_{5.5} as well. HMWO₆ phases yield H_{1+x}MWO₆ hydrogen bronzes on exposure to hydrogen in the presence of platinum catalyst. © 1986 Academic Press, Inc.

1. Introduction

Several complex metal oxides containing alkali metals undergo ion exchange in aqueous or molten salt media retaining their structural features. Such ion-exchange reactions provide low-temperature routes for the synthesis of new solids that cannot be prepared by high-temperature methods (1, 2). An interesting example of ion-exchange reaction accompanied by a structural transformation is that of proton exchange of LiNbO₃ and LiTaO₃ (3). The exchange results in the formation of cubic HNbO₃ and HTaO₃ possessing an ReO₃-type structure. We have been interested in investigating the possible occurrence of a similar exchange of lithium in oxides crystallizing in different structures. We have found that when LiNbWO₆ and LiTaWO₆ are refluxed aqueous H_2SO_4 , $HNbWO_6$ and with

0022-4596/86 \$3.00 Copyright © 1986 by Academic Press, Inc. All rights of reproduction in any form reserved. HTaWO₆ are formed. The reaction is accompanied by a transformation from the rutile to the ReO₃ structure. We believe that this is the first instance of such a transformation occurring at low temperatures. In this paper, we report the preparation and structural characterization of HNbWO₆ and HTaWO₆ from their lithium analogues and suggest a possible mechanism for the rutile-ReO₃ transformation.

2. Experimental

LiNbWO₆ and LiTaWO₆ were prepared by reacting the required quantities of Li₂CO₃, WO₃, and Nb₂O₅/Ta₂O₅ at 800°C for 24 hr. Both the oxides crystallize in trirutile structure as revealed by X-ray powder diffraction. Their lattice parameters (a = 4.677(6) and c = 9.27(1) Å for the niobium compound and a = 4.673(2) and c = 9.309(5) Å for the tantalum compound) agree with the values reported in the literature (4).

¹ Contribution No. 315 from the Solid State and Structural Chemistry Unit.

² To whom correspondence should be addressed.

FIG. 1. X-Ray powder diffraction patterns of (a) LiNbWO₆, (b) HNbWO₆ \cdot H₂O, (c) HNbWO₆, (d) NbWO_{5.5}, and (e) NbWO_{5.5} after heating at 900°C for 12 hr.

Ion exchange of lithium in LiNbWO₆ and LiTaWO₆ was investigated by refluxing the solids in hot aqueous H_2SO_4 and HNO_3 . The reaction was monitored by the flame test of the filtrate and X-ray diffraction of the solid. Exchange was not significant with HNO₃ but facile exchange occurred with 9– 13 M H_2SO_4 at 150–210°C, the tantalum compound requiring higher concentrations of the acid. The reaction was complete with LiNbWO₆ in 24 hr in 9 M H₂SO₄ while it required about a week with LiTaWO₆ in 13 м H_2SO_4 . The solid products were filtered. washed with water, and air-dried at 110°C. Their composition as determined by chemical analysis of tungsten and thermogravimetry was $HMWO_6 \cdot H_2O$ (M = Nb or Ta).

The protonated oxides were characterized by X-ray diffraction, thermogravimetry and IR absorption spectroscopy. X-ray diffraction patterns were recorded with a JEOL JDX-8P powder diffractometer using Fe-filtered CoK α radiation. Thermogravimetric curves were recorded using a Sartorius microbalance at a heating rate of 5°C per minute. Infrared spectra were recorded in KBr pellets and Nujol mull using a Perkin-Elmer 599 spectrometer.

3. Results and Discussion

Both LiNbWO₆ and LiTaWO₆ transform to the protonated oxides on treatment with hot aqueous H_2SO_4 as revealed by the presence of lithium in the filtrate and the changes in X-ray diffraction patterns of the solids. Chemical analysis of tungsten and thermogravimetric analysis of water content revealed that the composition of the solid products is $HMWO_6 \cdot H_2O$ (M = Nbor Ta). Both protonated phases are isomorphous adopting the simple cubic structure of ReO₃ (or perovskite) (Fig. 1). The X-ray reflections are broad indicating that the particle size of the products is much smaller than that of the parent $LiMWO_6$. The observed d spacings and intensities of $HNbWO_6 \cdot H_2O$ (together with other related niobium oxides) are given in Table I. The unit cell parameters of $HMWO_6 \cdot H_2O$ (a = 3.783(3)) Å for the niobium compound and a = 3.785(5) Å for the tantalum compound) are comparable to HNbO₃ and HTaO₃ possessing ReO₃-related structure (3). Recently, Weller and Dickens (5) have reported a cubic cell of a = 7.622 Å for HTaO₃ on the basis of a powder X-ray and neutron diffraction study. The doubling of the cubic cell of the ReO₃ structure has been attributed to tilting of the TaO₆ octahedra. We do not see any evidence for such doubling of the unit cell in the diffraction patterns of HMWO₆.

Thermogravimetric analysis in air shows

hkl	$HNbWO_6 \cdot H_2O^4$		HNbWO ₆ ^b		NbWO _{5.5} c		H _{-1.3} NbWO ₆ ^d	
	d (Å)	I	d (Å)	1	d (Å)	1	d (Å)	Ι
100	3.779	100	3.773	100	3.779	100	3.773	100
110	2.672	45	2.681	42	2.691	42	2.675	55
111	2.181	7	2.199	5	2.214	5	2.203	8
200	1.891	14	1.894	13	1.910	12	1.884	11
210	1.691	22	1.696	18	1.702	18	1.695	22
211	1.545	9	1.548	10	1.553	9	1.546	11
220	1.337	3	1.340	3	1.347	3	1.340	3
221 300	1.261	5	1.263	4	1.270	4	1.263	6

TABLE I

......

a = 3.783(3) Å.

 $^{b}a = 3.79(1)$ Å.

a = 3.81(2) Å.

 $^{d}a = 3.79(1)$ Å.

that $HMWO_6 \cdot H_2O$ readily loses water of hydration to give anhydrous phases around 400°C (Fig. 2). The anhydrous compounds are stable up to about 600°C and suffer further weight loss. The second weight loss is likely to be due to the reaction

 $HNbWO_6 \rightarrow NbWO_{5.5} + \frac{1}{2}H_2O$

The weight loss expected for the reaction is 2.41% and that found is 2.20%. Both the anhydrous HMWO₆ as well as MWO_{5.5} retain the cubic ReO₃ structure (Figs. 1c and d). It is indeed surprising that $MWO_{5.5}$ possesses the ReO₃ structure since the composition is anion deficient. The anion vacancies are probably ordered at the microstructrual level which is not revealed by powder X-ray diffraction. On annealing the cubic NbWO_{5.5} at 900°C for 12 hr, the phase transforms to a complex structure; its diffraction pattern (Fig. 1e) which could be indexed on a tetragonal cell with a =24.3 and c = 3.92 Å is strikingly similar to the tetragonal tungsten bronzes possessing pentagonal column structures (6, 7). HTaWO₆ \cdot H₂O, HTaWO₆, and TaWO_{5.5} adopting defect pyrochlore structures have been reported (8).

We have recorded the IR spectra of HNbWO₆ \cdot H₂O, HNbWO₆, and the cubic NbWO₅₅ to find out the nature of water and

FIG. 2. Thermogravimetric curves of (a) HNbWO₆ · H_2O and (b) $HTaWO_6 \cdot H_2O$.

FIG. 3. Infrared spectra of (a) $HNbWO_6 \cdot H_2O$, (b) $HNbWO_6$, and (c) $NbWO_{5,5}$ recorded in Nujol mull.

the presence of OH groups (Fig. 3). HNbWO₆ \cdot H₂O shows a strong, broad absorption between 3200 and 3500 cm⁻¹ and a sharp absorption around 1625 cm⁻¹ which are due to the stretching and bending modes of water, respectively. In addition, there is an absorption band around 1130 cm^{-1} which is probably due to *M*—OH bending. Metal hydroxides show absorption due to M—OH bending in this region (9, 10). In the IR spectrum of anhydrous HNbWO₆, the absorption at 1625 cm^{-1} disappears while the band around 1130 cm⁻¹ is retained. This can be taken to indicate that the proton in HNbWO₆ occurs as an OH group. The compound has therefore to be formulated as NbWO₅(OH) similar to other protonated oxides such as HNbO₃, HTaO₃, and $HNb_3O_8(3, 11)$. Both W and M as well as protons in $HMWO_6$ are apparently not ordered since the structure retains the cubic symmetry. In the IR spectrum of NbWO_{5.5}, all the absorption bands due to water and OH groups are absent. A broad and strong absorption centered around 800 cm⁻¹ and another medium absorption around 340 cm⁻¹ present in all the Nb—W oxides investigated are likely to be due to the internal modes of MO₆ and WO₆ octahedra.

The formation of HMWO₆ from LiMWO₆ on treatment with aqueous H_2SO_4 can take place by either a topotactic mechanism (similar to the formation of HMO₃ from LiMO₃) or a dissolution-recrystallization process. To distinguish between the two possibilities, we have refluxed a mixture of Nb₂O₅ and WO₃ in 9 M H₂SO₄ for 24 hr under conditions similar to the formation of HNbWO₆ · H₂O from LiNbWO₆. No HNbWO₆ was obtained in this reaction. It is possible that HNbWO₆ is not formed in this reaction because of the poor solubility of Nb₂O₅ in H₂SO₄. We have treated an

FIG. 4. Transformation of the tetragonal close-packed anion array to hexagonal close-packed (hcp) array by rotation of the occupied octahedra. (b) Transformation of NbWO₆ framework in LiNbWO₆ (trirutile) to NbO₃ framework of the LiNbO₃ structure. The oxygen array is idealized to hcp. Only occupied octahedra are shown. Shaded and unshaded octahedra are at different levels. (i) LiNbWO₆ trirutile. Li-occupied octahedra are shown with filled circles. (ii) NbWO₆ network after removal of lithium. Arrows indicate the direction of cation motion. (iii) NbWO₆ network after cation rearrangement. This network is equivalent to NbO₃ network in LiNbO₃.

equimolar mixture of LiNbWO₆ and Li TaWO₆ with 13 M H₂SO₄ for 1 week. The product obtained by this method showed an X-ray diffraction pattern similar to those of $HNbWO_6 \cdot H_2O$ and $HTaWO_6 \cdot H_2O$. We could not, however, decide from the pattern whether it is a mixture of $HNbWO_6$. H_2O and $HTaWO_6 \cdot H_2O$ or a single-phase solid solution of the two, $HNb_{1-x}Ta_{x}WO_{6}$. H₂O. Formation of a single-phase solid solution would indicate that the reaction proceeds by a dissolution-recrystallization process. An EDAX analysis of the product in a scanning electron microscope by monitoring $K\alpha$ of Nb and $L\alpha$ of Ta revealed that the majority of the crystals contained both Nb and Ta although a few crystals did contain either Nb or Ta. The result seems to suggest that the formation of $HMWO_6 \cdot H_2O$ from $LiMWO_6$ on treatment with H₂SO₄ proceeds by a dissolution-recrystallization mechanism although a topotactic mechanism cannot be entirely ruled out.

We suggest a possible mechanism for the topotactic transformation of LiMWO₆ to ReO_3 -like HMWO₆ in Fig. 4. On ion exchange, the tetragonal close-packed anion array of the rutile structure transforms first to the hexagonal close-packed (hcp) array. Subsequently cation rearrangement occurs to give a MWO_6 network that is similar to the NbO₃ network of the LiNbO₃ structure. The network then transforms to the ReO₃ structure by a mechanism similar to that proposed by Rice and Jackel (3) for the transformation of LiMO₃ to HMO₃. The latter involves rotation of the octahedra by ~60° about the $c_{\rm H}$ of LiMO₃ which rearranges the hcp anion array to the $\frac{3}{4}$ ccp anion array of the ReO₃ structure. Further needed to decide whether work is

 $LiMWO_6$ -HMWO₆ transformation occurs by a topotactic mechanism or a dissolution-recrystallization mechanism.

Since it is known that WO₃ forms stable hydrogen bronzes, H_xWO_3 (12), we expected that HNbWO₆ and HTaWO₆ would form similar hydrogen bronzes. We indeed found the formation of intense blue $H_{1+x}MWO_6$ (M = Nb or Ta) when anhydrous $HMWO_6$ dispersed with 0.5% of Pt was exposed to hydrogen at room temperature. Determination of the reducing power of the samples by oxidimetry revealed the formula of the bronzes to be $H_{\sim 1.3}MWO_6$. X-ray powder patterns of the blue bronzes are nearly identical with those of $HMWO_6$ indicating that the ReO₃ structure is retained in the bronzes. The observed d spacings and intensities of $H_{\sim 1.3}$ NbWO₆ are given in Table I. The hydrogen bronzes exhibit a much lower resistivity (\sim 30 ohm cm) for compressed polycrystalline pellets than the parent oxides ($\sim 10^6$ ohm cm) at room temperature. The blue color and the low resistivity of the bronzes are indicative of partial reduction of W⁶⁺ to W⁵⁺ on hydrogen insertion. Unlike H_xWO_3 , $H_{1+x}MWO_6$ bronzes are unstable under ambient conditions transforming to straw-white-colored parent oxides in \sim 30 min. The reaction is however reversible. The reversible insertion of hydrogen in HMWO₆ may be important in electrochromic devices.

Acknowledgments

Grateful thanks of the authors are due to Professor C. N. R. Rao, F.R.S. for valuable advice and encouragement. The authors thank the Department of Science and Technology, Government of India and the University Grants Commission, New Delhi, for support of this research.

References

- W. A. ENGLAND, J. B. GOODENOUGH, AND P. J. WISEMAN. J. Solid State Chem. 49, 289 (1983).
- 2. J. GOPALAKRISHNAN, Proc. Indian Acad. Sci. Chem. Sci. 93, 421 (1984).
- 3. C. E. RICE AND J. L. JACKEL, J. Solid State Chem. 41, 308 (1982).
- G. BLASSE AND A. D. M. DEPAUW, J. Inorg. Nucl. Chem. 32, 3960 (1970).
- 5. M. T. WELLER AND P. G. DICKENS, J. Solid State Chem. 58, 164 (1985).
- 6. R. S. ROTH AND J. L. WARING, J. Res. Natl. Bur. Stand. Sect. A 70, 281 (1966).
- 7. S. IIJIMA AND J. G. ALLPRESS, Acta Crystallogr. Sect. A 30, 22, 29 (1974).
- 8. D. GROULT, J. PANNETIER, AND B. RAVEAU, J. Solid State Chem. 41, 277 (1982).
- K. NAKAMOTO, "Infrared Spectra of Inorganic and Coordination Compounds," 2nd ed., Wiley, New York (1970).
- R. A. NYQUIST AND R. O. KAGEL, "Infrared Spectra of Inorganic Compounds," Academic Press, New York (1971).
- 11. F. IZUMI AND H. KODAMA, Z. Anorg. Allg. Chem. 441, 196 (1978).
- P. G. DICKENS AND M. F. PYE, in "Intercalation Chemistry" (M. S. Whittingham and A. J. Jacobson Eds.), Academic Press, New York (1982).